

Figure S6. (a) Numerical simulation of the cell growth in the supernatant at day 4 from the Fig. 3B, using the population density-dependent growth. We set the initial substrate concentration to the concentration at day 4 of same colored line in Fig. 4C. (b) Temporal survival kinetics using various releasing rate r values obtained by numerical simulations of the mathematical model. In all conditions, initial cell density were set to  $10^9$  cells/mL, and c = B were applied. (c) Temporal kinetics of the number of viable cells when energy loss is considered ( $c \neq B$ ,  $B / c = 1.0 \times 10^{-4}$ ) in the model. (d) Temporal kinetics of survivability using various releasing rate r values when mass conservation is not applied ( $c \neq B$ ,  $B / c = 1.0 \times 10^{-4}$ ) obtained by numerical simulations of the mathematical model. In all conditions, initial cell density were set to  $10^9$  cells/mL. In all analysis in this figure, we used the following parameter sets for the analysis:  $V_m = 0.3$ ,  $D_m = 0.035$ , K = 650,  $\alpha = 120$ ,  $\beta = 0.001$ ,  $\gamma = 1$ , and  $r = 1.0 \times 10^{-6}$ .